Интегральная теорема Муавра-Лапласа., Формула Пуассона, Случайные величины и их виды - О теории вероятностей
Полная версия

Главная arrow Математика, химия, физика arrow О теории вероятностей

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Интегральная теорема Муавра-Лапласа.

При больших значениях n , для вычисления вероятности того, что произойдет от к1, до к2 событий по схеме

Бернулли, используется интегральная формула Муавра-Лапласа

Pn(k1?k?k2)=Ф(x2)- Ф(x1),

где x1=(k1-np) /(vnpq), x2=(k2-np)/(vnpq), Ф(x) - функция Лапласа. (рис.7)

Ф(х) имеет следующие свойства:

1. Ф(-х)= -Ф(х) - функция нечетная, поэтому достаточно изучать её для неотрицательных значений х

2. Функция Ф(х) возрастает на всей числовой оси;

Функция Лапласа

Рис. Функция Лапласа

3. При х?5, Ф(х)>1/2 (y = 0,5 горизонтальная асимптота при х>0), поэтому функция представлена в виде таблицы Для 0?х?5 (прил.1).

4. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях не более чем на некоторое число е>0

Формула Пуассона

Если npq<10 и р<0,1, то

где л=np.

Случайные величины и их виды

Случайной величиной (СВ) называют такую величину, которая в результате опыта может принимать те или иные значения, причем до опыта мы не можем сказать какое именно значение она примет. (Более точно, СВ - это действительная функция, определенная на пространстве элементарных событий Q). Случайные величины обозначаются последними буквами латинского алфавита - X,Y,Z. Случайные величины могут быть трех типов: - дискретные, - непрерывные, - смешанные (дискретно-непрерывные). Дискретная случайная величина (ДСВ) может принимать конечное или бесконечное счетное число значений. Непрерывная случайная величина (НСВ) в отличие от ДСВ принимает бесконечное несчетное число значений. Например мишень имеет форму круга радиуса R. По этой мишени произвели выстрел с обязательным попаданием. Обозначим через Y расстояние от центра мишени до точки попадания, Ye [0; R]. Y - непрерывная случайная величина, так как она принимает бесконечное несчетное число значений.

Пусть X - дискретная случайная величина, которая принимает значения х1, х2, ...,хn,... с некоторой вероятностью рi, где i = 1, 2, ..., n,... Тогда можно говорить о вероятности того, что случайная величина X приняла значение хi: рi=Р(Х=хi).

ДСВ может также представляться в виде многоугольника распределения - фигуры, состоящей из точек, соединенных отрезками. Над СВ устанавливаются операции сложения и умножения.

Суммой двух СВ X и Y наз-ся случайная величина, которая получается в рез-те сложения всех значений случайной величины X и всех значений СВ Y, соответствующие вероятности перемножаются. Произведением двух СВ X и Y наз-ся СВ, которая получается в рез-те перемножения всех значений СВ X и всех значений СВ Y, соответствующие вероятности перемножаются.

 
Перейти к загрузке файла
<<   СОДЕРЖАНИЕ   >>