Математическое ожидание, Дисперсия ДСВ и ее свойства, Показательное распределение. - О теории вероятностей
Полная версия

Главная arrow Математика, химия, физика arrow О теории вероятностей

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Математическое ожидание

Математическим ожиданием М(Х) ДСВ X называется среднее значение случайной величины:

Или иначе, М(Х) - это сумма парных произведений случайной величины на соответствующую вероятность:

Мода Мо(Х) распределения - это значение СВ, имеющее наиболее вероятное значение.

Медиана Ме(Х) - это значение случайной величины, которое делит таблицу распределения на две части таким образом, что вероятность попадания в одну из них равна 0,5. Медиана обычно не определяется для ДСВ.

Свойства математического ожидания:

1) М(С)=С, где С=const;

2)М(СХ) = СМ(Х);

3) M(X±Y) = М(Х) ± M(Y);

4) Если случайные величины X и Y, независимы, то M(XY) = M(X)*M(Y).

Для биномиального распределения М(Х)=nр;

для геометрического распределения М(Х)= 1/р;

для распределения Пуассона М(Х)=л;

для гипергеометрического распределения М(Х) = n(M/N).

Дисперсия ДСВ и ее свойства

Математическое ожидание квадрата отклонения СВ от ее математического ожидания:

D(X) = M(x-M(X)2) = =(х1-М(Х))2р1+(х2-М(Х))2р2+....+(xn-М(Х))2рn .(2.3.2)

Свойства дисперсии:

1) D(С) = 0, где С=соnst;

2) D(CX)=C2D(X);

3) D(X)=M(X2)-(M(X))2, где М(Х2) = х21 р1 + x22 p2 + ...+ х2n рn;

4) Если СВ X и Y независимы, то D(X±Y)=D(X) + D(Y);

5) D(OX)=D(X);

6) Для любых СВ X и Y, D(X±Y)=D(X)+D(Y)±2cov(X,Y), где cov(X,Y)=M((X-mx)(Y-m )) - ковариация случайных величин X и Y (М(Х)= mx, M(Y)= m).

Дисперсия характеризует средний квадрат отклонения ДСВ, поэтому на практике часто используют в качестве характеристики разброса среднее квадратическое отклонение у(Х)= vD(X) , которое имеет ту же размерность, что и СВ X.

Для биноминального закона

D(X)=npq, у(X)=vnpq;

для геометрического закона D(X)= q/p2;

для гипергеометрического D(X)=n(M/N)(1-M/N)(N-n)/(N-1);

для распределения Пуассона D(X)=л.

Только для распределения Пуассона M(X)=D(X)= л.

Показательное распределение.

НСВ X, принимающая неотрицательные значения, имеет показательное распределение, если ее дифференциальная функция имеет вид

где Я =const, Я >0.

Интегральная функция показательного закона с параметром л:

Показательный закон

Рис. Показательный закон

Если СВ X распределена по показательному закону, то:

1. Математическое ожидание М(Х) = 1/л ;

2. Дисперсия D(X)=1/л2, среднее квадратическое отклонение

у(X)=vD=1/л.

3. Вероятность попадания СВ X в заданный интервал определяется по формуле

Р(а?х<b) = е-ла-лb.

Замечание. Показательное распределение играет большую роль в теории массового обслуживания (ТМО), теории надежности. В ТМО параметр X - среднее число событий, приходящихся на единицу времени. При определенных условиях число событий, произошедших за промежуток времени т, распределено по закону Пуассона с математическим ожиданием а =лф. Длина промежутка t, между произвольными двумя соседними событиями, подчиняется показательному закону: P(T<t)=F(t)=l-eлt.

 
Перейти к загрузке файла
<<   СОДЕРЖАНИЕ   >>