Закон распределения дискретной случайной величины - О теории вероятностей
Полная версия

Главная arrow Математика, химия, физика arrow О теории вероятностей

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Закон распределения дискретной случайной величины

1. Биномиальный закон распределения. Случайная величина X принимает значения 0, 1, 2, 3, 4, 5,...,n, с вероятностью, определяемой по формуле Бернулли:

2. Закон распределения Пуассона. Случайная величина X принимает бесконечное счетное число значений: 0, 1, 2, 3, 4, 5,..., к,... , с вероятностью, определяющейся по формуле Пуассона:

где Х>0 - параметр распределения Пуассона.

При n>? и р>0 биномиальный закон приближается к закону распределения Пуассона, где л, = np.

Геометрический закон распределения. Пусть Р(А)=р - вероятность наступления события А в каждом опыте, соответственно, q=l-p - вероятность не наступления события А.

Вероятность наступления события А в к-ом опыте определяется по формуле:

P(X=k)=p-qk-1. (2.2.2.)

Случайная величина X, распределенная по геометрическому закону принимает значения 1, 2,...,к,... , с вероятностью, определяемой по формуле (2.2.2):

4. Гипергеометрический закон распределения. Пусть в урне N-шаров, из них М белых, а остальные (N - М) черные. Найдем вероятность того, что из извлеченных n шаров m белых и (n-m) черных.

N= М + (N-M); n = m + (n-m);

СmM - число способов выбора m белых шаров из М;

Сn-mN-M- число способов выбора (n-m) черных шаров из (N-M).

По правилу произведения, число всех возможных наборов из m белых и (n-m) черных равно СmM Сn-mN-M;

CnN- общее число способов выбора из N шаров n.

Отсюда, по формуле классического определения вероятности, P(A)= (СmM Сn-mN-M)/ CnN

Ограничения на параметры: М?N, m?n; m = m0, m0 +1, m0+2,..., min(M,n), где m0=max{0, n-(N-M)}. Случайная величина Х, распределенная по гипергеометрическому закону распределения (при т=0,1,2,3,...,М), имеет вид:

Гипергеометрический закон определяется тремя параметрами N, М, n. При n<0,1N этот закон стремится к биномиальному.

Замечание.

1. В теории вероятностей различают две основные схемы: выбора элементов с возвращением каждый раз обратно и выбора без возвращения, которые описываются соответственно биномиальным и гипергеометрическим законами.

2. Геометрический закон описывает схему повторения опытов (в каждом из которых может наступить или не наступить событие А: Р(А)=р, q=l-p), до первого появления события А, то есть фактически это отрицательное биномиальное распределение при m=1.

16. Одинаково распределённые, взаимонезависимые дискретные случайные величины

СВ называют одинаково распределенными, если они имеют одинаковые законы распределения. Поэтому у них совпадают числовые характеристики: математическое ожидание, дисперсия, среднее квадратическое отклонение.

Пусть X1, Х2,..., Хn одинаково распределенные, взаимонезависимые ДСВ, тогда:

M(X1) = М(Х2) = ... = М(Хn) = М(Х), D(X1) = D(X2) = ...= D(Xn)=D(X).

Рассмотрим характеристики их средней арифметической X = (X1+X2+…+Xn)/n:

-стандартное отклонение СВ X.

Дисперсия относительной частоты (m/n) появления события А в n независимых испытаниях (в каждом из которых событие А появляется с вероятностью равной р, и не появляется с вероятностью q= 1-р; m-число появлений события А в серии из n испытаний), определяется по формуле

 
Перейти к загрузке файла
<<   СОДЕРЖАНИЕ   >>