Числовые характеристики системы двух случайных величин. Корреляционный момент. Коэффициент корреляции - О теории вероятностей
Полная версия

Главная arrow Математика, химия, физика arrow О теории вероятностей

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Числовые характеристики системы двух случайных величин. Корреляционный момент. Коэффициент корреляции

Начальным моментом порядка s,h системы двух случайных величин X, Y называется математическое ожидание произведения степени s случайной величины X и степени h случайной величины Y:

бs,h =M(XsYh)

Центральным, моментом порядка s, h системы СВ (X, Y) называется математическое ожидание произведения степеней s, h соответствующих центрированных случайных величин:

мs,h =M(XSYh), где X =X-М(X),

Y=Y-М(Y)

-центрированные случайные величины X и Y.

Основным моментом порядка s, h системы СВ (X,Y) называется нормированный центральный момент порядка s, h:

Начальные моменты б1.0, б0,1

б1.0=M(X1Y0)=M(X); б0.1=M(X0Y1)=M(Y).

Вторые центральные моменты:

м2,0=M(X2Y0)=M(x-M(X))2=D(X)

- характеризует рассеяние случайных величин в направлении оси ОХ.

м2,0 = M(X0Y2) = M(y-M(Y))2 = D(Y)

- характеризует рассеяние случайных величин в направлении оси OY.

Особую роль в качестве характеристики совместной вариации случайных величин X и Y играет второй смешанный центральный момент, который называется корреляционным моментом - K(X,Y) или ковариацией -

cov(X,Y): м1,1=K(X,Y)=cov(X,Y)=M(X1Y1)=M(XY)-M(X)M(Y).

Корреляционный момент является мерой связи случайных величин.

Если случайные величины X и Y независимы, то математическое ожидание равно произведению их математических ожиданий:

М (XY)= М (X) М (Y), отсюда cov(X,Y)=0

Если ковариация случайных величин не равна нулю, то говорят, что случайные величины коррелированны. Ковариация может принимать значения на всей числовой оси, поэтому в качестве меры связи используют основной момент порядка s=1, h=1 ,который называют коэффициентом корреляции:

Свойства коэффициента корреляции:

1. -1<rху<1.

2. Если r = +1, то случайные величины линейно зависимы;

3. Если rху = 0, то случайные величины некоррелированны, что не означает их независимости вообще.

Замечание. Если случайные величины X и Y подчиняются нормальному закону распределения, то некоррелированность СВ X и Y означает их независимость.

 
Перейти к загрузке файла
<<   СОДЕРЖАНИЕ   >>