Выборочный метод, Специальные законы распределения - О теории вероятностей
Полная версия

Главная arrow Математика, химия, физика arrow О теории вероятностей

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Выборочный метод

В реальных условиях обычно бывает трудно или экономически нецелесообразно, а иногда и невозможно, исследовать всю совокупность, характеризующую изучаемый признак (генеральную совокупность). Поэтому на практике широко применяется выборочное наблюдение, когда обрабатывается часть генеральной совокупности (выборочная совокупность). Свойства (закон распределения и его параметры) генеральной совокупности неизвестны, поэтому возникает задача их оценки по выборке. Для получения хороших оценок характеристик генеральной совокупности необходимо, чтобы выборка была репрезентативной (представительной). Репрезентативность, в силу закона больших чисел, достигается случайностью отбора.

Различают 5 основных типов выборок. 1).Собственно-случайная: а) повторная (элементы после выбора возвращаются обратно); б) бесповторная (выбранные элементы не возвращаются).

2). Типическая - генеральная совокупность предварительно разбивается на группы типических элементов, и выборка осуществляется из каждой. Следует различать: а) равномерные выборки (при равенстве объемов исходных групп в генеральной совокупности выбирается одинаковое количество элементов из каждой); б) пропорциональные (численность выборок формируют пропорционально численностям или средним квадратическим отклонениям групп генеральной совокупности); в) комбинированные (численность выборок пропорциональна и средним квадратическим отклонениям, и численностям групп генеральной совокупности).

3) механическая отбор элементов проводится через определенный интервал.

4).Серийная - отбор проводится не по одному элементу, а сериями для проведения сплошного обследования.

5). Комбинированная - используются различные комбинации вышеуказанных методов, например, типическая выборка сочетается с механической и собственно случайной.

После осуществления выборки возникает задача оценки числовых характеристик генеральной совокупности по элементам выборочной совокупности. Различают точечные и интервальные оценки.

Специальные законы распределения

1. х2 -распределение Пирсона. Пусть X1, X2, ...,Хn одинаково распределенные по нормальному закону случайные величины, являющиеся взаимно-независимыми, для которых математическое ожидание равно нулю, а среднеквадратическое отклонение 1, тогда сумма квадратов этих случайных величин носит название случайной величины х2 - xu-квадрат с v=n степенями свободы:

При v=l (учитывая дифференциальная функция:

Дифференциальная функция распределения ч2 с v=n степенями свободы задается формулой

где Г(х) - гамма, функция Эйлера.

при R+; если n Z, то Г(n+ 1)=n!

С возрастанием числа степеней свободы v = n, распределение ч2 медленно приближается к нормальному закону распределения. На практике используют обычно не плотность вероятности, а квантили распределения.

Квантилью ч2n распределения, отвечающей заданному уровню значимости б (альфа) - ч2б,н , называется такое значение ч2= ч2б,н, при котором вероятность того, что ч2 превысит значение ч2б,н, равна б:

Дифференциальная функция распределения чс н степенями свободы

Рис. Дифференциальная функция распределения ч 2 с н степенями свободы.

С геометрической точки зрения нахождение квантили заключается в выборе такого значения Х2= 5Ca v при котором площадь криволинейной трапеции ограниченной дифференциальной функцией была бы равна а. Значения квантилей затабулированы. При n>30 распределение практически не отличается от нормального.

Замечание. Квантиль СВ X порядка a - это такое значение СВ X, что F(xa) = а, где F(x)=P(X<x). Например, медиана - это квантиль x0.5.

2. t- распределение Стъюдента. Это распределение имеет важное значение при статистических вычислениях, связанных с нормальным законом, распределения, где a - неизвестный параметр распределения и подлежит определению из опытных данных, например, при статистической обработке наблюдений с неизвестной точностью.

Пусть X, X,, X2,...,Xk независимые нормально распределённые случайные величины с нулевыми математическими ожиданиями и одинаковыми дисперсиями. Безразмерная величина

называется дробью Стьюдента.

Ее распределение не зависит от а в силу ее безразмерности. Дифференциальная функция t-распределения с v=k степенями свободы имеет вид

t - распределение Стьюдента быстрее, чем х2 стремится к нормальному.

На практике используют квантили распределения в зависимости от числа степеней свободы и уровня значимости б.

С геометрической точки зрения нахождение квантилей (для двусторонней области) заключается в выборе такого значения t, при котором суммарная площадь криволинейной трапеции была бы равна б, в силу симметрии распределения:

F-распределение Фишера-Снедекора.

Пусть Х1, X2, ...,Xm и Y1, Y2, ...,Yn одинаково распределенные по нормальному закону случайные величины, являющиеся взаимно-независимыми, для которых математическое ожидание равно нулю, а среднеквадратическое отклонение равно единице.

Рассмотрим дробь Фишера F(m,n)=(ч2m/m)/(ч2n/n), она имеет F - распределение с v1= m - числом степеней свободы числителя, и v2=n - числом степеней свободы знаменателя ((m, n) степенями свободы), которое называется распределением Фишера-Снедекора. Обычно используют квантили распределения в зависимости от числа степеней свободы (m, n) и уровня значимости а:

Дифференциальная функция F распределения Фишера -Снедекора с v=5, v=50 степенями свободы

Рис. Дифференциальная функция F распределения Фишера -Снедекора с v1=5, v2=50 степенями свободы

Для квантилей распределения Фишера-Снедекора геометрический смысл аналогичен другим распределениям (рис.23). Имеет место равенство

Распределения ч2 - Пирсона, t - Стьюдента, F -Фишера-Снедекора нашли широкое применение в математической статистике, в частности при проверке статистических гипотез и в дисперсионном анализе.

 
Перейти к загрузке файла
<<   СОДЕРЖАНИЕ   >>