Общие модели статистического анализа, Средняя арифметическая ряда - О теории вероятностей
Полная версия

Главная arrow Математика, химия, физика arrow О теории вероятностей

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Общие модели статистического анализа

Характеристика методов многомерного анализа, (компонентный анализ, факторный анализ, кластер-анализ(классификация без обучения). Дискриминантный анализ (классификация с обучением. Канонические корреляции. Множественный ковариационный анализ).

Реальные процессы зависят от параметров, их характеристик, поэтому возникает необходимость в применении мер, методов статистического анализа.

Методы МСА следует рассматривать, как логическое продолжение методов ТВ и МС. Принципиальное различие состоит в учете более 3-х факторов.

Методы МСА базируются на представлении информации в многомерном пространстве и позволяют определить латентные зак-ти, сущ-ие объективно.

Методы:

- моделирования и первичной обработки данных

- анализа и построения зависимости

- классификация и снижение зависимости размерности

Средняя арифметическая ряда

Вариационные ряды позволяют получить первое представление об изучаемом распределении. Далее необходимо исследовать числовые характеристики распределения (аналогичные характеристикам распределения теории вероятностей): характеристики положения (средняя арифметическая, мода, медиана); характеристики рассеяния (дисперсия, среднее квадратическое отклонение, коэффициент вариации); характеристики меры скошенности (коэффициент асимметрии) и островершинности (эксцесс) распределения.

Средней арифметической (х) дискретного вариационного ряда называется отношение суммы произведений вариантов на соответствующие частоты к объему совокупности:

(3.2.1)

Модой (М*(Х)) дискретного вариационного ряда называется вариант, имеющий наибольшую частоту.

Медианой (М*(Х)) дискретного вариационного ряда называется вариант, делящий ряд на две равные части. Если дискретный вариационный ряд имеет 2n членов: x1, x2, ..., xn, xn+1, ... x2n, то

Ме*(Х)=(xn+xn+1)/2.

Если дискретный вариационный ряд имеет 2n+1 членов: x1, x2, ..., xn-1, xn, xn+1, ... x2n+1, то

М*e(Х)=xn+1.

Для интервальных вариационных рядов (с равными интервалами для медианы и моды) имеют место формулы: а) медианы

где хМе - начало медианного интервала, h - длина частичного интервала, n - объем совокупности, SMe-i, - накопленная частота интервала, предшествующего медианному, nМе -частота медианного интервала;

б) моды

где хМо- начало модального интервала, h -длина частичного интервала, nмо - частота модального интервала, nМо-1 -частота предмодального интервала, nМо+1 - частота послемодального интервала;

в) средней арифметической, совпадающей с формулой (3.2.1) для дискретного вариационного ряда, причем в качестве вариант хi принимаются середины соответствующих интервалов (интервалы могут иметь как одинаковую, так и разную длину).

Мода и медиана используются в качестве характеристики среднего положения в случае, если границы ряда нечеткие или если ряд не симметричен.

 
Перейти к загрузке файла
<<   СОДЕРЖАНИЕ   >>