Функциональные ряды

Членами являются функции, определенные в некоторой области изменения аргумента х: U1(x)+U2(x)+…+Un(x)+… Придавая х какое-либо значение х0 из области определения функций Un(x), получим числовой ряд U1(x0)+ U2(x0)+…+ Un(x0)+… Этот ряд может сходиться или расходиться. Если он сходится, то точка х0 называется точкой сходимости функционального ряда. Если при х=х0 ряд расходится, то точка х0 называется точкой расходимости функционального ряда. Совокупность всех точек сходимости функционального ряда называется областью его сходимости.

Функциональный ряд называется правильно сходящимся на сегменте [a, b], если существует такой знакоположительный сходящийся ряд b1+ b2 +…+ bn +…, что абсолютные величины членов данного ряда для любого значения х, принадлежащего сегменту [a, b], не превосходят соответствующих членов знакоположительного ряда, т. е. |Un(x)| ? bn (n=1, 2, …)

Неопределенный интеграл и его свойства

Интегральное исчисление решает обратную задачу: найти F(x), зная ее производную f(x).

Функция F(x) называется первообразной, если выполняется равенство F'(x)=f(x).

Если F(x) одна из первообразных функции f(x), то любая первообразная функции f(x) на этом промежутке имеет вид F(x)+C, где С€R.

Множество всех первообразных функции f(x) называется неопределенным интегралом

Свойства:

- неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме неопределенных интегралов от каждого слагаемого в отдельности;

- постоянный множитель можно выносить за знак неопределенного интеграла.

Асимптоты

Асимптотой кривой называется прямая, расстояние до которой от точки, лежащей на кривой, стремится к 0 при неограниченном удалении от начала координат этой точки по кривой.

Асимптоты бывают вертикальными, горизонтальными и наклонными.

Прямая х=a является вертикальной асимптотой графика функции y=f(x), если lim f(x)=? ,

x>0±a

Уравнение наклонной асимптоты будем искать в виде y=Rx+b

R = lim(y/x) ; b = lim (y - Rx)

x>0 x>0

Если y = b, то это уравнение горизонтальной асимптоты.

 
< Пред   СОДЕРЖАНИЕ   Скачать   След >