РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ И ОФОРМЛЕНИЮ КОНТРОЛЬНЫХ РАБОТ, ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ - Контрольные задания для заочников по математике
Полная версия

Главная arrow Математика, химия, физика arrow Контрольные задания для заочников по математике

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ И ОФОРМЛЕНИЮ КОНТРОЛЬНЫХ РАБОТ

Перед выполнением контрольной работы студент должен изучить соответствующие разделы курса “Математика”, используя учебную литературу. Список рекомендуемой литературы приведен в методических указаниях. Студент может использовать также учебники и учебные пособия, не включенные в данный список, если эти пособия содержат соответствующие разделы учебного курса.

Контрольная работа выполняется в отдельной тетради. На обложке тетради необходимо указать название учебной дисциплины, номер контрольной работы, а также полностью фамилию, имя и отчество студента, его адрес, специальность, номер студенческой группы, шифр (номер зачетной книжки) и дату отправки работы в институт.

Задачи контрольной работы выбираются в соответствии с указаниями преподавателя из таблиц вариантов. Вариант определяется двумя последними цифрами номера зачетной книжки. Предпоследняя цифра номера определяет таблицу вариантов, последняя цифра номера определяет столбец в выбранной таблице. Представленная для рецензирования контрольная работа должна содержать все задачи, указанные преподавателем. Решения задач следует приводить в той последовательности, которая определена в таблице вариантов. Условие каждой задачи должно быть приведено полностью перед ее решением. Контрольная работа должна быть подписана студентом.

Зачет по контрольной работе выставляется по результатам рецензирования и собеседования. Перед собеседованием студент обязан исправить в работе ошибки, отмеченные рецензентом.

Зачет по контрольным работам является обязательным для допуска к сдаче зачетов и экзаменов, которые предусмотрены учебным планом.

ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

1. -10. Векторы a, b, c, d заданы координатами в некотором базисе. Показать, что векторы a, b, c образуют базис в пространстве, и найти координаты вектора d в этом базисе.

1. a=(3; 2; 2),b=(2; 3; 1),c=(1; 1; 3),d=(5; 1; 11).

2. a=(1; 2; 3),b=(-2; 3; - 2),c=(3; - 4; - 5),d=(6; 20; 6).

3. a=(4; 2; 5),b=(-3; 5; 6),c=(2; - 3; - 2),d=(9; 4; 18).

4. a=(1; 2; 4),b=(1; - 1; 1),c=(2; 2; 4),d=(-1; - 4; - 2).

5. a=(2; 3; 3),b=(-1; 4; - 2),c=(-1; - 2; 4),d=(4; 11; 11).

6. a=(1; 8; 4),b=(1; 3; 1),c=(-1; - 6; - 3),d=(1; 2; 3).

7. a=(7; 4; 2),b=(-5; 0; 3),c=(0; 11; 4),d=(31; - 43; - 20).

8. a=(3; 2; 1),b=(4; - 1; 5),c=(2; - 3; 1),d=(8; - 4; 0).

9. a=(1; 3; 3),b=(-4; 1; - 5),c=(-2; 1; - 6),d=(-3; 5; - 9).

10. a=(1; 5; 3),b=(2; 1; - 1),c=(4; 2; 1),d=(31; 20; 9).

11. -20. Даны координаты точек A1, A2, A3, A4. Известно, что отрезки A1A2, A1A3, A1A4 являются смежными ребрами параллелепипеда. Требуется найти:

длину ребра A1A2; 2) угол между ребрами A1A2 и A1A3; 3) площадь грани, содержащей вершины A1,A2,A3; 4) объем параллелепипеда; 5) уравнение прямой, проходящей через вершину A1 вдоль диагонали параллелепипеда; 6) уравнение плоскости A1A2A3; 7) угол между ребром A1A4 и гранью, содержащей вершины A1,A2,A3; 8) расстояние от вершины A4 до плоскости A1,A2,A3. Сделать чертеж.

11. A1(0; 3; 2),A2(-1; 3; 6),A3(-2; 4; 2),A4(0; 5; 4).

12. A1(4; 2; 5),A2(0; 7; 2),A3(0; 2; 7),A4(1; 5; 0).

13. A1(-1; 2; 0),A2(-2; 2; 4),A3(-3; 3; 0),A4(-1; 4; 2).

14. A1(4; 4; 10),A2(4; 10; 2),A3(2; 8; 4),A4(9; 6; 4).

15. A1(2; 2; 3),A2(1; 2; 7),A3(0; 3; 3),A4(2; 4; 5).

16. A1(4; 6; 5),A2(6; 9; 4),A3(2; 10; 10), A4(7; 5; 9).

17. A1(0; - 1; 2),A2(-1; - 1; 6),A3(-2; 0; 2),A4(0; 1; 4).

18. A1(3; 5; 4),A2(8; 7; 4),A3(5; 10; 4),A4(4; 7; 8).

19. A1(3; 0; 2),A2(2; 0; 6),A3(1; 1; 2),A4(3; 2; 4).

20. A1(10; 6; 6),A2(-2; 8; 2),A3(6; 8; 9),A4(7; 10; 3).

21. Даны уравнения двух сторон параллелограмма: x+2y+1=0 и 2x+y-3=0. Центр параллелограмма находится в точке A(1; 2). Найти уравнения двух других сторон. Сделать чертеж.

22. Даны две вершины треугольника A(2; 1), B(4; 9) и точка пересечения высот N(3; 4). Найти уравнения сторон треугольника. Сделать чертеж.

23. Даны две противоположные вершины квадрата A(1; 3) и C(-1; 1). Найти координаты двух его других вершин и составить уравнения сторон. Сделать чертеж.

24. Найти уравнения сторон треугольника, если заданы его вершина A(1; 3) и уравнения двух медиан x-2y+1=0, y-1=0. Сделать чертеж.

25. Известны уравнение одной из сторон квадрата x+3y-3=0 и точка пересечения диагоналей N(-2; 0). Найти уравнения остальных ее сторон. Сделать чертеж.

26. Уравнения боковых сторон равнобедренного треугольника 2x-y+8=0, x-2y-12=0. Точка N(4; 0) лежит на основании треугольника. Найти уравнение основания. Сделать чертеж.

27. Найти уравнения сторон треугольника, зная одну его вершину B(2; - 7), а также уравнения высоты 3x+y+11=0 и медианы x+2y+7=0, проведенных из различных вершин. Сделать чертеж.

28. Точка A(5; - 4) является вершиной квадрата, диагональ которого лежит на прямой x-7y-8=0. Написать уравнения сторон и второй диагонали этого квадрата. Сделать чертеж.

29. Уравнение основания равнобедренного треугольника x+y-1=0, уравнение боковой стороны x-2y-2=0. Точка N(-2; 0) лежит на другой боковой стороне. Найти уравнение этой стороны. Сделать чертеж.

30. Даны уравнения медиан треугольника 5x+4y=0 и 3x-y=0 и одна из его вершин A(-5; 2). Найти уравнения сторон треугольника. Сделать чертеж.

31. Составить уравнение и построить окружность, проходящую через точки A(1; 2), B(0; - 1) и C(-3; 0).

32. Составить уравнение и построить линию, расстояние каждой точки которой от точки A(0; 1) в два раза меньше расстояния ее до прямой y-4=0.

33. Составить уравнение и построить линию, сумма квадратов расстояний от каждой точки которой до точек A(-3; 0) и B(3; 0) равна 50.

34. Составить уравнение и построить линию, расстояние от каждой точки которой до точки A(-1; 1) вдвое меньше расстояния до точки B(-4; 4).

35. Составить уравнение и построить линию, сумма расстояний от каждой точки которой до точек A(-2; 0) и B(2; 0) равна 2.

36. Составить уравнение и построить линию, каждая точка которой находится на одинаковом расстоянии от точки F(2; 2) и оси Ox.

37. Составить уравнение и построить линию, расстояния каждой точки которой от точки A(2; 0) и от прямой 5x+8=0 относятся как 5: 4.

38. Составить уравнение и построить линию, расстояния каждой точки которой от начала координат и от точки A(5; 0) относятся как 2: 1.

39. Составить уравнение и построить гиперболу, проходящую через точку N(9; 8), если асимптоты гиперболы имеют уравнения y=±(2/3) x.

40. Составить уравнение и построить гиперболу, вершины и фокусы которой находятся в соответствующих фокусах и вершинах эллипса 5x2+8y2=40.

41. -50. Кривая задана уравнением в прямоугольной системе координат. Требуется: 1) найти уравнение кривой в полярной системе координат, полюс которой совмещен с началом прямоугольной системы координат, а полярная ось - с положительной полуосью Ox; 2) построить кривую по точкам со значениями полярного угла цk=kр/16.

41. (x2+y2) 2 = 2(x2-y2); 42. (x2+y2) 2 = 4xy;

43. (x2+y2) 2/4 = x2-y2; `44. (x2+y2) 2 = 8xy;

45. (x2+y2) 2 = 6(x2-y2); 46. (x2+y2) 2 = 2(y2-x2);

47. (x2+y2) 2 = - 4xy; 48. (x2+y2) 2 = 4(y2-x2);

49. (x2+y2) 2 = - 8xy; 50. (x2+y2) 2 = 12xy.

 
Перейти к загрузке файла
<<   СОДЕРЖАНИЕ   >>