Расчёт тяговой рамы - Автогрейдер ДЗ-122 с дополнительным оборудованием для профилировки откосов
Полная версия

Главная arrow Товароведение arrow Автогрейдер ДЗ-122 с дополнительным оборудованием для профилировки откосов

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Расчёт тяговой рамы

При расчёте тяговой рамы для расчётного положения принимаю, что на неё действуют максимальные нагрузки, возникающие в условиях нормальной эксплуатации. При этом сочетание возможных нагрузок выбирается таким, чтобы тяговая рама находилась в наиболее благоприятных условиях. Такие условия возникают, если нож отвала автогрейдера в процессе резания встречает поверхностный слой более плотного грунта или под плотным слоем оказывается более рыхлый.

рис.10

При этом реакция грунта Z на площадку затупления ножа О оказывается меньше, чем составляющая Рв от силы Р, действующей по нормали к ножу (рис.10). В силу этого суммарная сила Р'z действует вниз, вызывая самозатягивание отвала в грунт. Ведущие колёса автогрейдера находятся на пределе полного буксования.

Схема нагружения автогрейдера при расчёте тяговой рамы показана на рис.11. На конце режущей кромки О ножа отвала действуют усилия Рx, Рy, Рz. Экспериментально установлено, что наибольшее влияние на прочность тяговой рамы оказывают усилия Рx и Рz. Поэтому рассматриваем случай, когда автогрейдер находится на горизонтальной площадке, так как при этом указанные усилия достигают максимальных величин. В условных точках О'2 и О''2 задних мостов действуют вертикальные реакции Z2п и Z и силы тяги X2п и X. Кроме того, на задних мостах за счёт упора боковых поверхностей шин в грунт возникает боковая реакция Y2 (на создание её усилий сцепление не расходуется). Передним мостом воспринимается боковая реакция Y1 по пределу сцепления. В точках О'1 и О''1 действуют реакции Z1п и Z в центре тяжести автогрейдера сосредотачивается сила его веса G и равнодействующая инерционных сил Ри подсчитываемая по формуле:

где КД = 1,5 - коэффициент динамичности, принимаемый для первого

расчётного положения

Иmax = 0,85 -максимальный коэффициент использования сцепного веса

G2 = 76,2кН - сила тяжести автогрейдера, приходящаяся на задний мост

Схема сил для расчёта тяговой рамы

Рис.11 Схема сил для расчёта тяговой рамы

Составляя уравнения равновесия, получаем выражение для определения неизвестных сил:

?X = 0:

после подстановки значения Рх получаем:

Реакцию Z находим из уравнения:

Реакцию Z2п находим из уравнения:

Значение Y1 подсчитываем по выражению:

где - максимальный коэффициент бокового сдвига

f = 0,05 - коэффициент сопротивления перекатыванию

Значение Y2 подсчитываем по выражению:

Остальные реакции колёс находим из уравнений:

Боковую реакцию грунта находим из уравнения

?Y = 0: Y2 + Py - Y1 = 0

Py = Y1 - Y2 = 25 - 16 = 9кН

Усилия в шаровом шарнире О4 определяем с помощью схемы на рис.12

Схема сил, действующих на шаровой шарнир при расчёте тяговой рамы

Рис.12 Схема сил, действующих на шаровой шарнир при расчёте тяговой рамы

?X = 0: Х4 = Рx = 94,5кН

,

,

Заменяя шарнир О4 равновеликой системой сил Х4, Y4, Z4, можно рассматривать тяговую раму как консольную балку с местом заделки в плоскости Q'. Максимальные нагрузки будут в месте заделки, т.е. в сечении I-I с наибольшим плечом n. На это сечение будут воздействовать:

- изгибающий момент

- изгибающий момент

- растягивающее усилие

Для расчёта профиля, составленного из двух стандартных, выбираю швеллер №24а с размерами Јх1 = Јх2 = 3180 см4, Јy1 = Јy2 = 254 см4, h = 24см, b=9,5 см, х0 = 2,67 см, F = 32,9 см2

Задаваясь параметрами и типом сечения рис.13, определяем возникающие в нём напряжения:

При этом должно выполняться условие:

При этом должно выполняться условие

Рис.13 Поперечное сечение тяговой рамы.

 
Перейти к загрузке файла
<<   СОДЕРЖАНИЕ   >>