Главная Медицина
Аденилатциклазный сигнальный механизм
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Участие G-белков в реализации АЦ стимулирующего эффекта инсулинаДля доказательства участия G-белков в действии инсулина на активность АЦ был применен широко распространенный подход, в котором используется набор гуаниновых нуклеотидов, способных в разной степени либо стимулировать ГТФ-азную активность G-белков в присутствии ГТФ и его аналогов - ГТФ?S, ГИДФ и тем самым активировать АЦ, либо ингибировать ГТФ-азную активность G-белка в присутствии ГДФ?S. Было исследовано влияние ГТФ и ряда его негидролизуемых аналогов на активность АЦ в присутствии и отсутствии гормона (Табл. 6). Таблица 6. Влияние гуаниновых нуклеотидов в отсутствии и присутствии инсулина на активность АЦ во фракции мышечных мембран крысы и моллюска
Примечание: в круглых скобках - активирующий АЦ эффект используемых агентов в% по отношению к базальной активности, принятой за 100%. В квадратных скобках - потенцирование эффекта гормона в присутствии гуаниновых нуклеотидов в %. Согласно представленным данным, ГТФ?S, ГИДФ, ГТФ стимулируют активность АЦ в мышечных мембранах крыс и моллюсков. При совместном действии инсулина и гуаниновых нуклеотидов происходит усиление (потенцирование) эффекта гормона по сравнению с аддитивным эффектом гормона и гуаниновых нуклеотидов, действующих раздельно - в присутствии ГТФ?S, ГИДФ и ГТФ на +109%, +41% и +20% у крыс и на +170%, 86% и 30% у моллюсков (табл. 6). ГДФ?S же напротив снижает АЦ стимулирующий эффект инсулина как в мышцах крыс, так и моллюсков. Потенцирование эффекта инсулина в присутствии ГТФ?S, ГИДФ, ГТФ и отсутствие потенцирующего эффекта в присутствии ГДФ?S свидетельствует о вовлеченности Gs-белков в АЦ сигнальный механизм действия пептидов инсулинового суперсемейства. Таблица 7. Влияние коклюшного и холерного токсинов на базальную, инсулин- и ИФР1-стимулируемую активность АЦ в скелетных мышцах крысы и моллюска A.cygnea
Примечание: В скобках - активность АЦ в%. Активность АЦ без пептидов принята за 100%. Для выяснения типов G белков, вовлеченных в АЦ сигнальный механизм действия инсулина и ИФР-1 были использованы бактериальные токсины (коклюшный и холерный), которые модифицируют ?-субъединицы Gi и Gs белков. Коклюшный токсин вызывает АДФ-рибозилирование ?i-субъединицы Gi белка, что ведет к потере его функциональной активности (Milligan, 1988; Reisine, 1990). Известно, что ??-димер Gi белка обладает собственной регуляторной способностью и может стимулировать активность ФИ-3-К. Обработка мышечных мембран крысы и моллюска коклюшным токсином приводила к блокированию АЦ стимулирующего эффекта, как инсулина, так и ИФР-1 (таблица 7), что можно объяснить нарушением диссоциации гетеротримерного Gi белка на ?i-субъединицу и ?? димер в условиях действия коклюшного токсина. Таким образом, коклюшный токсин, предотвращая индуцируемую инсулином или ИФР-l стимуляцию активности ФИ-3-К, реализуемую через ??-зависимый механизм, тормозит активацию АЦ. Влияние холерного токсина на мембраны приводит к блокаде ГТФ-азной активности ?s-субъединицы и тем самым переводит её в перманентно активированное состояние. В связи с этим обработка мембран холерным токсином может повлечь за собой стимулирование каталитической активности АЦ и наряду с этим ослабление регуляторных эффектов гормонов, действие которых на АЦ осуществляется через Gs белок (Milligan, 1988; Reisine, 1990). Обработка фракции мышечных мембран крысы и моллюска холерным токсином приводит к 2х-кратному увеличению базальной активности АЦ и снижению стимулирующего эффекта инсулина и ИФР-1 на активность фермента (таблица 7), что полностью согласуются со сведениями литературы и указывает на вовлеченность Gs белка в активацию АЦ с участием инсулина или ИФР-1. Таким образом, совокупность данных, полученных с использованием коклюшного и холерного токсинов, указывает на участие как Gi, так и Gs белков в АЦ сигнальном механизме действия инсулина и ИФР-l. |
<< | СОДЕРЖАНИЕ | >> |
---|