Обработка экспериментальных данных средствами MathCAD., Интерполяция. - Система Mathcad
Полная версия

Главная arrow Информатика arrow Система Mathcad

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Обработка экспериментальных данных средствами MathCAD.

Инженеру на практике часто приходится сталкиваться с необходимостью определения функции, которая задана таблично. Т.е. известны экспериментально снятые аргумент и функция в узловых точках, а в промежутках эта функция неизвестна и ее надо найти.

Для анализа экспериментальных зависимостей и приведения их к наглядному виду часто используются такие средства, как интерполяция, сглаживание и аппроксимация. В некоторых задачах для анализа зависимости бывает необходимо найти ее Фурье-компоненту. Все перечисленные средства анализа можно реализовать средствами MathCad.

Интерполяция.

Интерполяцией называют заполнение отрезками кривых промежутков между заданными точками по тому или иному закону. Для проведения интерполяции в первую очередь должна быть задана экспериментальная зависимость в виде набора точек на плоскости. Для этого должны быть заданы два одномерных массива (вектора) - vx и vy, содержащие соответственно значения координат x и y каждой точки. При этом важно, чтобы значения в векторе vx были заданы в порядке возрастания.

Система MathCad позволяет проводить линейную интерполяцию и сплайн-интерполяцию наборов экспериментальных точек.

Простейшим вариантом интерполяции является линейная интерполяция. Она заключается в простом соединении точек между собой отрезками прямых. Для реализации такой интерполяции в MathCad существует встроенная функция linterp(vx,vy,x) , где vx vy - уже известные векторы, содержащие координаты последовательности точек, x - координата точки, в которой нужно вычислить значение интерполирующей функции. Пример построения линейной интерполяции приведен на рис.5

Линейная интерполяцияЛинейная интерполяция

Рис.5 Линейная интерполяция

На практике линейная интерполяция применяется редко.

Из всех видов интерполяции наиболее часто используется интерполяция, где экспериментальные точки попарно соединяются отрезками полиномов. Чаще всего для этого выбирают полиномы третьей степени(поэтому такая кривая и называется кубическим сплайном). Для того чтобы найти коэффициенты этих полиномов, очевидно, недостаточно того условия, что кривая должна проходить через экспериментальные точки. Поэтому на сплайн накладываются дополнительные условия сшивки - первая и вторая производные слева и справа от каждой экспериментальной точки должны быть равны между собой. Но и после этого количество условий остается на два меньше, чем количество неизвестных коэффициентов. Дополнительные два условия должны быть наложены в начальной и конечной экспериментальных точках, поскольку в них нет условий сшивки. Эти условия можно выбрать по-разному. В MaqthCad существуют три различных функции для построения кубических сплайнов с различными дополнительными условиями.

· lspline(vx,vy) - в начальной и конечной точках накладывается условие линейности, т.е. вторая производная от функции равна нулю. Первая буква в названии функции - l , означает linear (линейный).

· pspline(vx,vy) - на первом и последнем интервале кривая является параболой, т.е. полиномиальный коэффициент при x3 равен нулю. Буква p означает parabolic (параболический).

· cspline(vx,vy) - полиномиальные коэффициенты при x3 на первых двух интервалах равны между собой точно так же, как на последних двух интервалах. Буква c означает cubic (кубический).

Результатом каждой из перечисленных функций является вектор, содержащий значения вторых производных от интерполяционной кривой во всех точках, заданных в массиве vx. Для того чтобы исходя из этого вектора построить кривую, нужно воспользоваться встроенной функцией interp(v,vx,vy,x), где vx и vy - массивы экспериментальных точек, v - массив, полученный как результат одной из трех функций, перечисленных выше, x- координата, в которой нужно вычислить значение интерполяционной кривой. Пример интерполяции кубическим сплайном приведен на рис.6.

Интерполяция кубическим сплайномИнтерполяция кубическим сплайном

Рис.6 Интерполяция кубическим сплайном

В приведенном примере использована функция pspline. В большинстве случаев от того, какую функцию вы используете, слабо зависит поведение кривой внутри интервала экспериментальных значений. Заметное отличие появляется лишь за границами этого интервала.

Кубический сплайн является эффективным средством построения интерполяционной кривой в подавляющем большинстве случаев. Но иногда использование кубического сплайна может привести к нежелательным результатам. Чаще всего это происходит в тех случаях, когда данные очень неравномерно распределены вдоль оси x. В таких случаях на кривой кубического сплайна могут появляться острые экстремумы в промежутках между экспериментальными точками. В некоторых подобных случаях получить лучщую интерполяционную кривую помогает использование другого вида интерполяции - В-сплайна. Основное отличие В-сплайна от всех описанных выше методов - сшивка отрезков кривых происходит не в экспериментальных точках, а между ними, в специально заданных точках. В MathCad для реализации интерполяции В-сплайном служит функция bspline(vx.vy,u,n), где vx,vy - векторы, содержащие координаты экспериментальных точек, u - вектор, содержащий координаты точек сшивки, n - порядок полинома. Результатом функции bspline является вектор, который далее следует использовать как аргумент функции interp. В-сплайн в MathCad можно построить из отрезков прямых, парабол или кубических парабол, т.е. допустимые значения параметра n - 1,2 или 3. Количество точек сшивки не является произвольной величиной и должно быть всегда на n-1 меньше, чем количество экспериментальных точек. Также на координаты точек сшивки накладываются следующее условие: первая точка сшивки должна быть не правее первой экспериментальной точки, а последняя не левее последней экспериментальной точки. Остальные точки сшивки могут произвольным образом располагаться внутри отрезка. Пример использования В-сплайна приведен на рис.7.

 
Перейти к загрузке файла
<<   СОДЕРЖАНИЕ   >>