Аппроксимация набора точек различными элементарными функциями, Аппроксимация набора точек функциями, заданными пользователем. - Система Mathcad
Полная версия

Главная arrow Информатика arrow Система Mathcad

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Аппроксимация набора точек различными элементарными функциями

Физические величины зачастую подчиняются зависимостям отличным от линейных или полиномиальных. Поэтому в MathCad существует несколько функций, позволяющих выполнить регрессию с использованием зависимостей, наиболее часто встречающихся на практике. Таких функций в MathCad всего шесть. Вот некоторые из них:

· expfit(vx,vy,vg) - регрессия экспоненциальной функцией y = a*eb*x+c.

· sinfit(vx,vy,vg) - регрессия синусоидальной функцией y = a*sin(x+b)+c.

· pwrfit(vx,vy,vg) - регрессия степенной функцией e = a*xb +c.

Перечисленные функции используют трехпараметрическую аппроксимирующую функцию, нелинейную по параметрам. При вычислении оптимальных значений трех параметров регрессионной функции по методу наименьших квадратов возникает необходимость в решении сложной системы из трех нелинейных уравнений. Такая система часто может иметь несколько решений. Поэтому в функциях MathCad, которые проводят регрессию трехпараметрическими зависимостями, введен дополнительный аргумент vg. Данный аргумент - это трехкомпонентный вектор, содержащий приблизительные значения параметров a,b и c, входящих в аппроксимирующую функцию. Неправильный выбор элементов вектора vg может привести к неудовлетворительному результату регрессии. На рис.11 приведен пример проведения экспоненциальной регрессии с помощью функции expfit, регрессия проведена для двух различных значений вектора vg.

Экспоненциальная регрессияЭкспоненциальная регрессия

Рис.11 Экспоненциальная регрессия

Аппроксимация набора точек функциями, заданными пользователем.

В MathCad существуют средства для проведения регрессии самого общего вида. Это означает, что можно использовать любые функции в качестве аппроксимирующих и находить оптимальные значения любых их параметров, как линейных, так и нелинейных. В том случае, если регрессионная функция является линейной по всем параметрам, т.е. представляет линейную комбинацию жестко заданных функций, провести регрессию можно с помощью встроенной функции linfit(vx,vy,F). Аргумегт F - это векторная функция, из элементов которой должна быть построена линейная комбинация, наилучшим образом аппроксимирующая заданную последовательность точек. Результатом работы функции linfit является вектор линейных коэффициентов. Каждый элемент этого вектора - коэффициент при функции, стоящей на соответствующем месте в векторе F. Таким образом, для того чтобы получить регрессионную функцию, достаточно скалярно перемножить эти два вектора. Пример такой аппроксимации представлен на рис.12.

Рис.12 Использование функции linfit

 
Перейти к загрузке файла
<<   СОДЕРЖАНИЕ   >>