Первый закон термодинамики
Термодинамическая система, как и любая другая физическая система, обладает некоторым запасом энергии, который обычно называют внутренней энергией системы. Внутренняя энергия системы есть сумма всех видов кинетической и потенциальной энергии всех составных частей молекулы: молекул, атомов, электронов. Таким образом, в состав внутренней энергии входит кинетическая энергия поступательного и вращательного движений атомов и молекул, энергия их колебательного движения, потенциальная энергия взаимодействия атомов и молекул, кинетическая и потенциальная энергия электронов в атомах, внутриядерная энергия. Однако в большинстве физических явлений, в которых участвуют термодинамические системы, не все перечисленные виды энергии испытывают изменения. Например, при сжатии, расширении или нагревании газообразных тел изменяются только интенсивности поступательного и вращательного движений их молекул; внутриатомная энергия в таких процессах не участвует. В химических процессах остается без изменения внутриядерная энергия; ее изменения наблюдаются только в явлениях радиактивности и в ядерных реакциях.
Поэтому очень часто, употребляя понятие внутренней энергии, имеют в виду не полную энергию данной системы, а только ту ее часть, которая участвует и изменяется в рассматриваемых явлениях.
Внутренняя энергия системы является однозначной функцией ее состояния, то есть в каждом определенном состоянии система обладает вполне определенным значением внутренней энергии. Однако при данной внутренней энергии система может находиться в различных состояниях. Внутренняя энергия системы, в частности термодинамической, может быть выражена в зависимости от значений всех физических величин, определяющих это состояние: объема, давления, t0. Расчет внутренней энергии тел, находящихся в твердом или жидком состоянии, затруднен и требует использования ряда упрощающих предположений. Имеется формула только для расчета внутренней энергии разреженного газа в зависимости от его t0. Ее можно получить на основании следующих рассуждений.
Допустим, газ сильно разряжен, так что его молекулы в среднем находятся далеко друг от друга и слабо взаимодействуют между собой. При этих условиях потенциальной энергией взаимодействия молекул можно пренебречь и тогда внутренняя энергия газа определяется только кинетической энергии теплового движения его молекул.
Внутренняя энергия системы уменьшается, если система отдает в окружающую среду энергию, а также если система совершает положительную работу. Внутренняя энергия системы повышается, если она получает энергию извне и если положительную работу совершают внешние силы, действующие на систему.
При переходе термодинамической системы из одного состояния в другое изменение ее внутренней энергии равно разности между количеством получаемой или отдаваемой теплоты и внешней работы, совершаемой при этом системой. Так звучит первый закон термодинамики.
Однако все тепло не может быть потрачено на полезную работу. Часть тепла теряется и теряется необратимо. В качестве элементарного примера можно привести работу электрической лампочки, которая сопровождается двумя эффектами - нагреванием и свечением. Та часть энергии, которая переходит в свечение, производит полезную для нас работу, но часть тепла расходуется на нагревание стекла лампы и окружающего пространства, то есть, переходит в хаотическую форму, растрачивается необратимо, за счет нее невозможно произвести полезную работу. Путем точных экспериментов было доказано, что тепловая энергия превращается в механическую энергию в строго определенных количествах. Существование такого механического эквивалента - коэффициент полезного действия (КПД) - дл теплоты свидетельствует о ее сохранении.
Из первого закона термодинамики следует вывод: невозможен вечный двигатель первого рода, то есть такой двигатель, который бы совершал работу за счет разовой подачи энергии от внешнего источника, поскольку невозможно полное превращение энергии внешнего источника в полезную работу, так как часть энергии неизбежно переходит в энергию теплового хаотического движения молекул.
Второй закон термодинамики
При рассмотрении тепловых явлений самым очевидным оказался тот факт, что распространение тепла представляет собой необратимый процесс. Хорошо известно, что тепло, возникшее, например, в результате какой-либо механической работы или в результате трения, нельзя превратить в энергию и на этом использовать для производства работы. Так же, как невозможно произвести работу, например, за счет охлаждения озера или моря при установившейся t0. Известно и то, что тепло передается от горячего тела к холодному, а не наоборот. Отсюда следует, что всякая предоставленная самой себе система стремится перейти в состояние термодинамического равновесия, в котором тела покоятся друг относительно друга, обладая одинаковыми t0 и P. Достигнув этого состояния, система сама по себе из него не выходит. Если это термодинамическое состояние приближается к тепловому равновесию, то оно необратимо. В системе тел, находящихся в термодинамическом равновесии, без внешнего вмешательства невозможны никакие реальные процессы, то есть с их помощью невозможно совершать работу.
Второй закон термодинамики утверждает, что невозможно получить работу за счет энергии тел, находящихся в термодинамическом равновесии.
Окружающая нас среда обладает значительными запасами тепловой энергии. Двигатель, работающий только за счет энергий, находящихся в тепловом равновесии тел, был бы практически вечным двигателем. Второй закон термодинамики исключает возможность создания такого вечного двигателя второго рода.