Проверка статистических гипотез относительно средних величин

Среди важнейших обобщающих характеристик, относительно которых чаще всего выдвигаются гипотезы, является средняя величина. С целью проверки гипотезы о равенстве средних в генеральной совокупности необходимо сформулировать нулевую гипотезу. При этом, как правило, исходят из того, что обе выборки взяты из нормально распределенной генеральной совокупности с математическим ожиданием, равным X и с дисперсией, равной с0 . Если это предположение верно, то х1 - х2 ~ х . Фактически же выборочные средние Х1 И Х2 не будут равны из-за случайности выборки. Поэтому нужно выяснить существенность различий между х1 х2 - находится ли их разница в пределах возможной случайной вариации или же она выходит за эти пределы. Тогда задача проверки гипотезы сводится к проверке существенности различия

Каждая выборочная средняя имеет свою ошибку /и:

Определив дисперсии и среднюю ошибку выборочных средних, можно вычислить фактическое значение И-критерия и сравнить его с критическим (табличным) значением при соответствующем уровне значимости и числе степеней свободы вариации (для выборок с численностью п > 30 используется и-критерий нормального распределения, а для выборок с численностью п < 30 - и-критерий Стьюдента).

Фактическое значение и-критерия определяется по формуле

Если выборочное значение критерия попадает в критическую область (їфакі> О, нулевая гипотеза о равенстве средних отклоняется; если же выборочное значение критерия попадает в область допустимых значений (Іфакг< їа), нулевая гипотеза принимается.

Нулевая гипотеза о равенстве средних в двух генеральных совокупностях может быть также проверена путем сравнения фактической средней разницы [єФа,.т = ~~2) с предельной случайной ошибкой при заданном уровне значимости (еа). Если фактическая разница между выборочными средними находится в пределах случайной ошибки (єфакт < еа), нулевая гипотеза принимается. Если же фактическая разница между средними выходит за пределы случайной ошибки (еф^т > еа), нулевая гипотеза отклоняется.

При решении конкретных задач по проверке статистических гипотез относительно средних необходимо учитывать следующие моменты: 1) схему формирования выборок (выборки независимые и зависимые); 2) равенство или неравенство объемов выборок; 3) равенство или неравенство дисперсий генеральных совокупностях.

Алгоритм проверки гипотезы относительно двух средних несколько меняется, если дисперсии по выборкам (512 и 522) существенно отличаются. В этом случае при определении числа степеней свободы вводится поправка:

Когда же при неравных дисперсиях по выборкам, неровными есть и их численности (п1 и п2), табличное значение г-критерия Стьюдента следует рассчитать по формуле

где и1 и и2 - табличные значения Г-критерия Стьюдента, которые берутся в соответствии с п1 - 1 и п2 - 1 степенями свободы.

Рассмотрим пример проверки статистической гипотезы о равенстве двух средних независимых выборок равной численности (п1=п2) и равными дисперсиями (СГ;2 = ).

Да, есть данные по живой массы телят при рождении двух группах коров черно-пестрой породы (коровы одного возраста). Первая группа коров имела нормальную продолжительность лактации (305 дней), а вторая группа доилась в течение 320 дней. В каждую группу вошло по 5 коров. Данные наблюдения приведены в табл. 7.2.

Таблица 7.2. Живая масса телят при рождении по группам коров с разной продолжительностью лактации

Живая масса телят при рождении по группам коров с разной продолжительностью лактации

Сопоставление живых масс телят по двух группах коров показывает, что более высокая живая масса телят наблюдается у коров И группы, которые имели нормальную продолжительность лактации. Однако, в связи с тем, что численность выборок небольшая (п = 5), не исключена возможность, что разногласия между живыми массами полученные в результате действия случайных причин.

Необходимо статистически оценить разницу между средними по двум группам коров.

По результатам проверки гипотезы сделать вывод о том, что разница между средними лежит в пределах случайных колебаний, или же эта разница настолько значительная, что не согласуется с нулевой гипотезой о случайном характере различий между средними.

Если будет доказано второе положение и отклонено первых, можно утверждать, что продолжительность лактации влияет на живую массу телят.

Условие задачи предполагает, что обе выборки взяты из нормально распределенной генеральной совокупности. Формирование групп случайное (независимое), поэтому должна оцениваться разница между средними.

Определим среднюю живую массу телят по двух группах коров:

Фактическая разница между средними составляет:

Существенность этой разницы должна быть оценена. Для этого необходимо проверить гипотезу о равенстве двух средних.

Рассмотрим подробно все этапы схемы проверки гипотезы. 1. Сформулируем нулевую Но и На альтернативную гипотезы:

2. Примем уровень значимости а = 0,05, гарантируя принятие гипотезы или отказа от нее с вероятностью ошибки только в 5 случаях из 100.

3. Наиболее мощным критерием для проверки такого рода гипотезы Н0 есть и-критерий Стьюдента.

4. Сформулируем правило принятия решения по результатам

проверки Н0. Поскольку по альтернативной гипотезой х1 может быть или меньше или больше х2 , то критическая область должна быть установлена с двух

сторон: и - ~иа и и - иа , или короче: иа .

Такая форма задания критерия называется двусторонней критической областью. Критическая область при а = 0,05 будет содержаться в пределах - все значения выше, чем верхняя 2,5% и ниже, чем 2,5% точки распределения и-критерия Стьюдента.

С учетом сказанного выводы по проверке Н0 можно сформулировать так: гипотеза Н0 отклонятся, если фактическое значение Г-критерия окажется

больше табличное значение, то есть если іфакт > иа . В противном случае Ка должна быть принята.

5. Чтобы проверить Н0 нужно определить фактическое значение Г-критерия Стьюдента и сравнить его с табличным значением.

Для определения фактического значения Г-критерия Стьюдента выполним следующие вычисления.

6. Вычислим по каждой выборке скорректированные на потерю степеней свободы вариации дисперсии. Для этого предварительно возведем в квадрат значения хц и х2і:

7. Рассчитаем квадраты средних ошибок по каждой выборке и обобщенную среднюю ошибку разности средних:

8. Рассчитаем фактическое значение Г-критерия Стьюдента:

9. Определим табличное значение критерия Г-Стьюдента, исходя из уровня значимости а = 0,05 и числа степеней свободы для двух выборок:

По таблице "Критические точки распределения Стьюдента" (доп. 3) найдем и при а = 0,05 и к = 8: і005 = 2,31.

10. Сравним фактическое и табличное значение-критерия Стьюдента:

Поскольку іфаккг < и^05 (выборочное значение критерия находится в области допустимых значений), нулевая гипотеза о равенстве средних генеральных совокупностях принимается.

Итак, влияние продолжительности лактации на живую массу телят при рождении оказывается недоведенним.

Однако следует обратить внимание на такой существенный момент: живая масса телят при рождении во всех наблюдениях опыта выше в первой группе коров, которые имеют нормальную продолжительность лактации. Поэтому вместо альтернативной гипотезы На х1 ф х2 может быть взята другая. Поскольку нет оснований считать, что при нормальной продолжительности лактации живая масса телят будет ниже, то очевидно, что более целесообразной формой альтернативной гипотезы есть: На : х1 > х2.

Тогда критическая область, что составляет 0,05 всей площади под кривой распределения, будет расположена только с одной (правой) стороны, так как отрицательные значения живых масс считаются несовместимыми с условиями задачи. В связи с этим табличное значение-критерия следует определять при удвоенном значении уровня значимости (т.е. при 2а; иа = 2 o 0,05 = 0,10). Критерий проверки гипотезы формулируется так: нулевая гипотеза отклоняется, если > і2а.

Такая форма задачи критической области называется односторонней. Односторонний критерий более чувствителен к ошибкам второго рода, но его применение допустимо лишь в случае, если доказана правомерность данной альтернативной гипотезы.

Установим по таблицам (прил. 3) табличное значение-критерия при а = 0,10 и к = 8, і0Д0 = 1,86.

Итак, при использовании одностороннего критерия нулевая гипотеза отклоняется, Т.е. критерий окажется в критической области (іфакг > і0д0; 2,14 > 1,86). Таким образом, живая масса телят при рождении в группе коров с нормальной продолжительностью лактации существенно выше. Этот вывод точный, чем полученный на основе двустороннего критерия, так как здесь использована дополнительная информация для обоснования правильности применения одностороннего критерия.

Такой же вывод получим и путем сравнения возможной предельной ошибки двух выборок еа с фактической разницей средних.

Вычислим возможную предельную ошибку разности средних по двум выборкам: є0до = Г010 o /А_2 = 1,86 o 1,87 = 3,48 кг и сравним ее с фактической разницей средних:

Сопоставляя предельную возможную ошибку с фактической разницей средних, можно сделать аналогичный вывод о том, что выдвинутая гипотеза о равенстве средних не согласуется с полученными результатами.

Проверку гипотезы для случая зависимых выборок с равными чисельностями и равными дисперсиями рассмотрим на таком примере.

Да, есть данные выборочного наблюдения по продуктивности коров-матерей и коров-дочерей (табл. 7.3).

Таблица 7.3. Продуктивность коров-матерей и коров-дочерей

Продуктивность коров-матерей и коров-дочерей

Необходимо проверить статистическую гипотезу относительно средней разницы между парами взаимосвязанных наблюдений в генеральной совокупности.

Так как наблюдения двух выборок попарно взаимосвязаны (зависимые выборки), то необходимо сравнивать не разницу между средними, а среднее значение разностей между парами наблюдений (и ). Рассмотрим все этапы процедуры проверки гипотезы. 1. Сформулируем нулевую и альтернативную гипотезы:

При такой альтернативе необходимо применить двусторонний критерий.

2. Уровень значимости примем равным а = 0,05.

3. Самым мощным критерием проверки Н0 есть и-критерий Стьюдента.

4. Вычислим среднюю разность

5. Рассчитаем скорректированную дисперсию средней разницы:

6. Определим среднюю ошибку средней разницы:

7. Вычислим фактическое значение-критерия Стьюдента:

8. Установим число степеней свободы, исходя из численности пар взаимосвязанных разниц:

9. Найдем табличное значение Г-критерия Стьюдента при к = 4 и а = 0,05; V. = 2,78 (прил. 3).

10. Сравним фактическое и табличное значение критерия:

Фактическое значение критерия выше табличное. Следовательно, величина средней разницы между надоями двух выборок существенная и нулевая гипотеза отклоняется.

Такие же выводы получим, сравнивая возможную предельную ошибку с фактической средней разницей:

Предельная ошибка показывает, что в результате случайного варьирования средняя разница может достигать 2,4 ц. Фактическая средняя разница выше:

Итак, по результатам исследования можно с высокой степенью вероятности утверждать, что различия в значениях средних удоев коров-матерей и коров-дочерей вероятны.

 
< Пред   СОДЕРЖАНИЕ   След >