МАКРОМОЛЕКУЛЫ. БЕЛКИ.

Белки, их свойства, структура

Белки - это высокомолекулярные биополимерные органические соединения, мономерами которых являются аминокислоты. Белки были выделены в отдельный класс биологических молекул в XVIII в. в результате работ французского химика А. де Фуркруа. Впервые описал белки и предложил название протеины , что в современном понимании означает белок, голландский химик Е. Я. Берцелиус. Первое выделение белка (в виде клейковины) из пшеничной муки было осуществлено Я. Беккари. Особенностью исследований белков начале XXI в. одновременное получение данных о белковый состав целых клеток, тканей или организмов, чем занимается отдельная наука - протеомика .

Молекулярная масса белков от 5000 до 150000 Да и больше.

Одним из крупнейших единичных белков является титин (компонент саркомеров мышц), содержащий более 29 тыс. Аминокислот и имеет молекулярную массу 3000000 Да. Но самые большие по массе белки (более 40000000 Да) характерны для вирусов.

Химический состав . Состоят белки с С, Η, О, N ; в некоторых белках является S , часть белков образует комплексы с другими молекулами, которые содержат Р, Fe, Zn, Сu . Белки являются биополимеры из 20 различных мономеров - природных основных аминокислот. Белки могут образовывать интерполимерных комплексы с углеводами, липидами, нуклеиновыми кислотами, фосфорной кислотой и др.

Физико-химические свойства. Благодаря наличию свободных аминогрупп и карбоксильных групп белки характеризуются всеми свойствами кислот и оснований ( амфотерные свойства ). Диссоциация аминокислот и карбоксильных белковых групп обусловливает электрофоретических подвижность белков. При низких значениях pH белкового раствора в нем преобладают положительно заряженные аминогруппы, поэтому белки находятся в катионной форме. При высоких значениях pH преобладают отрицательно заряженные СООН-группы и белки будут находиться в анионной форме. При некотором промежуточном значении pH аминогруппы и карбоксильные группы могут взаимодействовать между собой, тогда сумма зарядов равна нулю, и белки остаются неподвижными в электрическом поле ( электрические свойства ). Высокая молекулярная масса оказывает белковым растворам свойств, характерных для коллоидных систем, а именно: способность к образованию гелей, высокая вязкость, малая скорость диффузии, высокая степень набухания, благодаря чему они связывают около 80-90% всей воды в организме ( коллоидные свойства ). Распад белков происходит под действием кислот, щелочей или специфических ферментов-гидролаз, которые расщепляют их до пептидов и аминокислот. Синтез осуществляется с аминокислот с матричным принципом с помощью информационной РНК. Под влиянием различных чиникив белки могут сворачиваться и выпадать в осадок, теряя природные свойства. Отсутствие заряда и гидратной оболочки способствует сближению белковых молекул, их слипанию и выпадению в осадок. Это явление называется коагуляцией, она может быть обратной и необратимой. Необратимую коагуляцию можно рассматривать как денатурации белков. Денатурация - это процесс нарушения естественной структуры белков. При этом уменьшается растворимость белка, меняются форма и размеры молекул и др. Процесс денатурации является обратимым, то есть возвращение нормальных условиях сопровождается восста-

Ленточная модель белка

Ленточная модель белка

нием природной структуры белка. Такой процесс называется ренатурацией . Отсюда следует, что особенности белка определяются его первичной структурой. А вот процесс разрушения первичной структуры белков всегда необратим, он называется деструкцией . Свойства белков зависят от структуры, состава и последовательности расположения аминокислот.

Структура белков. Молекулы белков являются линейными полимерами, состоящие из аминокислот. Кроме последовательности аминокислот полипептидной цепи (первичная структура), для функционирования белков крайне важна трехмерная структура (вторичная третичная и четвертичная), которая содержится в результате взаимодействия структур ниже уровней и формируется в процессе свертывания белков. Трехмерная структура белков в нормальных природных условий, при которых белки выполняют свои биологические функции, называется нашивными состоянию белка, а сама структура - нативной конформацией Выделяют четыре уровня структуры белков.

Уровни организации белковых молекул

структура

Химические связи, которые определяют существование

Химические связи, которые определяют существование

первичная

цепь

Пептидные, дисульфидные

вторичная

Спираль, складчатый лист

Пептидные, дисульфидные, водородные

третичная

глобула

Пептидные, дисульфидные, водородные, ионные, гидрофобные

четвертичная

мультимера

Пептидные, дисульфидные, водородные, ионные, гидрофобные

Первичная структура кодируется соответствующим геном, является специфической для каждого отдельного белка и в наибольшей степени определяет свойства сформированного белка. Вторичная структура представляет собой форму спирали (α-структуру) или структуру складчатого листа (β-конформация) и является термодинамически устойчивым состоянием полипептидной цепи и простой структурой конформации биомолекул. Примером белков с вторичной стуктуре в виде спирали являются белки-кератины (образуют волосы, ногти, перья и т.д.) и в виде складчатого листа - фиброин (белок шелка). Во вторичной структуре α-спиральные участки часто чередуются с линейными. Третичная структура возникает автоматически в результате взаимодействия аминокислотных остатков с молекулами воды. При этом гидрофобные радикалы "втягиваются" внутрь белковой молекулы, а гидрофильные группы ориентируются в сторону растворителя. Таким образом формируется компактная молекула белка, внутри которой практически отсутствуют молекулы воды. К белкам с третичной структурой относят миоглобин. Четвертичная структура возникает в результате сочетания нескольких субъединиц ( протомеры ), что вместе выполняют общую

функцию. Такое сочетание называется белковым комплексом ( мультимера , или эпимер ). Типичными белками четвертичной структуры является гемоглобин, СТМ, некоторые ферменты.

Конечная структура бывает очень сложной, а процесс ее принятия новосинтезированные по ли пептид ним цепочкой требует некоторого времени. Процесс принятия белком структуры называется свертыванием, или Фолдинг. Многие белки не способны завершить свертывания самостоятельно и достичь нативного состояния, часто через взаимодействие с другими белками клетки. Такие белки требуют внешней помощи от белков специального класса - молекулярных шаперонов. Большинство белков приобретает правильную конформации только в определенных условиях среды. При изменении этих условий белок денатурирует, меняя свою конформацию. Факторами, которые вызывают изменение конформации белков, является нагревание, излучение, сильные кислоты, сильные основания, концентрированные соли, тяжелые металлы, органические растворители и тому подобное.

Виды химических связей в белках. Аминокислоты способны образовывать ряд химических связей (пептидные, дисульфидные, водородные, ионные, гидрофобные) с различными функциональными группами, и это их свойство очень важно для структуры и функций белков.

Пептидный связь - это ковалентная азот-карбоновый полярный связь, которая образуется при взаимодействии NH 2 одной аминокислоты с СООН другой с выделением воды. Этот кислотоамидний связь (-CO-NH-) является основным химическим связью белковых молекул и определяет их первичную структуру и конформацию. Соединение, образующееся в результате конденсации двух аминокислот, является дипептид. На одном конце этой молекулы расположена аминогруппа, на другом - свободная карбоксильная. Благодаря этому дипептид может присоединять к себе другие аминокислоты.

Дисульфидная связь - это ковалентная полярный связь, которая образуется при взаимодействии сульфгидрильных групп ( -SH ) радикалов серосодержащих аминокислот цистеина. Эта связь (-S-S-) может возникать как между различными участками одной полипептидной цепи, так и между различными цепями, определяя особенности белковых молекул. Устойчивость многих белков в значительной мере обусловлена количеством именно этих связей, как бы "прошивают" молекулы, придавая им прочности, нерастворимости (например, в коллагена кожи, кератина волос, шерсти).

Водородная связь - это полярный связь, возникает при взаимодействии электроположительного водорода с электроотрицательным кислорода в составе гидроксильной, карбоксильной и аминной групп разных аминокислот. Эти связи (-О-Н) гораздо слабее, чем пептидные, дисульфидные и ионные, но в силу своего количества (возникают между группами, которых больше всего в молекулах белков) они приобретают очень большое значение в стабилизации структуры белковых молекул.

Ионный связь - это электростатический полярный связь, возникающая между ионизированной положительно заряженной аминогруппой одной й аминокислоты и ионизированной отрицательно заряженной карбоксильной группой другой аминокислоты. Этот солевой связь (-СОО - HN 3+ -) может объединять как витки одного и более полипептидных цепей в белках третичной структуры, так и витки различных цепей в белках четвертичной структуры. В водной среде ионные связи значительно слабее, чем пептидные, и могут разрываться при изменении pH.

Гидрофобные взаимодействия - это неполярная связь между радикалами аминокислот, которые не несут электрического заряда и не растворяются в воде. Сближение этих радикалов обусловлено характером взаимодействия гидрофобных групп (-СН3, -С2Н5 и т. Д.) С водой. Эти связи (-R-R-) еще слабее, чем водородные, они поддерживают третичную и четвертичную структуру белков.

БИОЛОГИЯ + Гемомоглобин ( от греч. Hаита - кровь и "лат. Globus - шар ) - сложный железосодержащий белок эритроцитов животных и человека; способен связываться с кислородом, обеспечивая его перенос в ткани. Кроме того, гемоглобин способен связывать в тканях небольшое количество сО, и освобождать его в лёгких. Гемоглобин с сложным белком класса хромопротеидов и содержит 1 ) белковую часть - глобин, которая состоит из четырех протомеры - двух идентичных а-цепей и двух идентичных β-цепей, 2 ) небелковую часть - гем , которая представлена четырьмя простетическими группами с координационным центром в виде Fe 2+ . Объединяются субъединицы водородными, ионными связями, но основной вклад в это взаимодействие вносят гидрофобные взаимодействия. Нормальным содержанием гемоглобина в крови человека вважасться: у мужчин - 130-170 г / л, у женщин - 120-150 г / л, у детей - 120-140 г / л. Гемоглобин высоко токсичен при попадании значительного его количества из эритроцитов в плазму крови ( например, при переливании несовместимой крови ) . Учитывая высокую токсичность свободного гемоглобина , в организме существуют специальные системы для его связывания и обезвреживания. В частности, одним из компонентов системы обезвреживания гемоглобина является особый плазменный белок гаптоглобин, специфически связывает свободный глобин и глобин в составе гемоглобина.

 
< Пред   СОДЕРЖАНИЕ   След >